If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+4w=121
We move all terms to the left:
4w^2+4w-(121)=0
a = 4; b = 4; c = -121;
Δ = b2-4ac
Δ = 42-4·4·(-121)
Δ = 1952
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1952}=\sqrt{16*122}=\sqrt{16}*\sqrt{122}=4\sqrt{122}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{122}}{2*4}=\frac{-4-4\sqrt{122}}{8} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{122}}{2*4}=\frac{-4+4\sqrt{122}}{8} $
| 6x+29=3x | | 3(x-3)+5=3x-2 | | r/2+12=14 | | p+12.95=44 | | b/2+12=14 | | 44=p-12.95 | | -7m+(-19)=37 | | 2800000-14x=840000 | | 8+26k=7k+10 | | 4x+20/3=12 | | 5x+(x-7)=-33-2x | | 75+3x=60+3x(2x-1) | | 5x^-4=16/125 | | t^2-18+81=0 | | 3+(2)/(5)x=-7 | | 5k-2k=1 | | 3+2/5x=-7 | | m(m−3)=0 | | 5x+2/5=5 | | 3y/2=3/7 | | p/90=7/18 | | (0.8)2x=0.45 | | 3(x+7)=6(x+12 | | 7y±2=3y-10 | | 2x−7+3x+2=11 | | 20=4h/4 | | 2^(5-7x)=15 | | 2y–2=5 | | 37z-82=291 | | 3/n=24/56 | | 14x17=92 | | P=6y |